New integrable (3+1)-dimensional systems and contact geometry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F18%3AA0000010" target="_blank" >RIV/47813059:19610/18:A0000010 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007%2Fs11005-017-1013-4" target="_blank" >https://link.springer.com/article/10.1007%2Fs11005-017-1013-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11005-017-1013-4" target="_blank" >10.1007/s11005-017-1013-4</a>
Alternative languages
Result language
angličtina
Original language name
New integrable (3+1)-dimensional systems and contact geometry
Original language description
We introduce a novel systematic construction for integrable (3+1)-dimensional dispersionless systems using nonisospectral Lax pairs that involve contact vector fields. In particular, we present new large classes of (3+1)-dimensional integrable dispersionless systems associated with the Lax pairs which are polynomial and rational in the spectral parameter.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Letters in Mathematical Physics
ISSN
0377-9017
e-ISSN
1573-0530
Volume of the periodical
108
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
24
Pages from-to
359-376
UT code for WoS article
000422943300006
EID of the result in the Scopus database
2-s2.0-85031945460