Relationship between li-yorke chaos and positive topological sequence entropy in nonautonomous dynamical systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F18%3AA0000032" target="_blank" >RIV/47813059:19610/18:A0000032 - isvavai.cz</a>
Result on the web
<a href="http://aimsciences.org//article/doi/10.3934/dcds.2018225" target="_blank" >http://aimsciences.org//article/doi/10.3934/dcds.2018225</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/dcds.2018225" target="_blank" >10.3934/dcds.2018225</a>
Alternative languages
Result language
angličtina
Original language name
Relationship between li-yorke chaos and positive topological sequence entropy in nonautonomous dynamical systems
Original language description
We study chaotic properties of uniformly convergent nonautonomous dynamical systems. We show that, contrary to the autonomous systems on the compact interval, positivity of topological sequence entropy and occurrence of Li-Yorke chaos are not equivalent, more precisely, neither of the two possible implications is true.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete and Continuous Dynamical Systems - Series A
ISSN
1078-0947
e-ISSN
1553-5231
Volume of the periodical
38
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
5119-5128
UT code for WoS article
000445567900015
EID of the result in the Scopus database
2-s2.0-85052021361