All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The infimum of Lipschitz constants in the conjugacy class of an interval map

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F19%3AA0000052" target="_blank" >RIV/47813059:19610/19:A0000052 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21110/19:00325604

  • Result on the web

    <a href="http://www.ams.org/journals/proc/2019-147-01/S0002-9939-2018-14255-0/" target="_blank" >http://www.ams.org/journals/proc/2019-147-01/S0002-9939-2018-14255-0/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/proc/14255" target="_blank" >10.1090/proc/14255</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The infimum of Lipschitz constants in the conjugacy class of an interval map

  • Original language description

    How can we interpret the infimum of Lipschitz constants in the conjugacy class of an interval map? For a positive entropy map f, the exponential exp h(f) of the topological entropy gives a well-known lower bound. In the case of a countably piecewise monotone map that is topologically mixing and Markov, we characterize the infimum.(f) of Lipschitz constants as the exponential of the Salama entropy of a certain reverse Markov chain associated with the map. Dynamically, this number represents the exponential growth rate of the number of iterated preimages of nearly any point; we show that it can be strictly larger than exp h(f). In addition we prove that if f is piecewise monotone or C-infinity, these two quantities.(f) and exph(f) are equal.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the American Mathematical Society

  • ISSN

    0002-9939

  • e-ISSN

    1088-6826

  • Volume of the periodical

    147

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    255-269

  • UT code for WoS article

    000450363900022

  • EID of the result in the Scopus database

    2-s2.0-85061617973