On Dynamics of Triangular Maps of the Square with Zero Topological Entropy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F19%3AA0000056" target="_blank" >RIV/47813059:19610/19:A0000056 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007%2Fs12346-018-00311-7" target="_blank" >https://link.springer.com/article/10.1007%2Fs12346-018-00311-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12346-018-00311-7" target="_blank" >10.1007/s12346-018-00311-7</a>
Alternative languages
Result language
angličtina
Original language name
On Dynamics of Triangular Maps of the Square with Zero Topological Entropy
Original language description
It is known that, for interval maps, zero topological entropy is equivalent with bounded topological sequence entropy as well as with the non-existence of Li–Yorke scrambled triples. In this paper we answer the question how the situation changes when triangular maps of the unit square are concerned instead of interval maps.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Qualitative Theory of Dynamical Systems
ISSN
1575-5460
e-ISSN
1662-3592
Volume of the periodical
18
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
8
Pages from-to
761-768
UT code for WoS article
000494890400002
EID of the result in the Scopus database
2-s2.0-85074871571