All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Use of Software on Modeling Hazardous Substance Release as a Support Tool for Crisis Management

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F21%3AA0000096" target="_blank" >RIV/47813059:19610/21:A0000096 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2071-1050/13/1/438" target="_blank" >https://www.mdpi.com/2071-1050/13/1/438</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/su13010438" target="_blank" >10.3390/su13010438</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Use of Software on Modeling Hazardous Substance Release as a Support Tool for Crisis Management

  • Original language description

    Today's modern society offers many new opportunities, but also many risks. Even modernization of companies cannot completely eliminate these dangers. In the smart industry, despite significant technological progress, it is necessary to work with various raw materials, including hazardous substances. It is these raw materials that will continue to pose risks in the future for industrial accidents, which cannot be ruled out. The possible release of hazardous substances can potentially have a negative impact on the environment and safety of the population. In order to deal with certain emergencies, it is necessary to allocate a large amount of funds and resources to them. The paper focuses on risk prevention in industry and the use of modern and new approaches. Specifically, it focuses on the implementation of the prevention of leakage of hazardous substances in the gaseous state from industrial facilities. The aim of the paper is to present a new approach to the prevention of leakage of hazardous substances, which provides more realistic calculations for modeling leaks and thus helps to reduce the cost of prevention. However, security in crisis management is not diminished. ALOHA CAMEO software was used for leak modeling, which the authors commonly use in practical applications and modeling in industrial enterprises in the performance of duties in the field of civil protection and crisis management. ALOHA software is used for such modeling, serving as a support tool for modeling for all crisis managers in Industry 4.0. This paper deals with the modeling of dispersion of hazardous substances with specific properties escaping from technological equipment located inside a building. This concerns the inability of the current dispersion model software to prevent the spread of the next leak inside the building containing the substance. A solution is needed to fix this problem. This issue is well illustrated by a specific example at the end of this article. The mentioned improvement of tools for simulation of industrial accidents influences the possibilities of development also in Industry 4.0. It enables more effective preparation for the management of possible accidents with regard to the appropriate spending of funds for prevention and subsequent response.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Sustainability

  • ISSN

    2071-1050

  • e-ISSN

    2071-1050

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    15

  • Pages from-to

    „438-1“-„438-15“

  • UT code for WoS article

    000606439800001

  • EID of the result in the Scopus database

    2-s2.0-85099815372