Symmetry nonintegrability for extended K(m, n, p) equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F22%3AA0000116" target="_blank" >RIV/47813059:19610/22:A0000116 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s10910-021-01312-9" target="_blank" >https://link.springer.com/article/10.1007/s10910-021-01312-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10910-021-01312-9" target="_blank" >10.1007/s10910-021-01312-9</a>
Alternative languages
Result language
angličtina
Original language name
Symmetry nonintegrability for extended K(m, n, p) equation
Original language description
In the present paper we study symmetries of extended K(m, n, p) equations and prove that the equations from this class have no generalized symmetries of order greater than five and hence are not symmetry integrable.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Chemistry
ISSN
0259-9791
e-ISSN
1572-8897
Volume of the periodical
60
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
6
Pages from-to
417-422
UT code for WoS article
000737740400001
EID of the result in the Scopus database
2-s2.0-85122256876