All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mapping method of group classification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F22%3AA0000118" target="_blank" >RIV/47813059:19610/22:A0000118 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0022247X22002232" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022247X22002232</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2022.126209" target="_blank" >10.1016/j.jmaa.2022.126209</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mapping method of group classification

  • Original language description

    We revisit the entire framework of group classification of differential equations. After introducing the notion of weakly similar classes of differential equations, we develop the mapping method of group classification for such classes, which generalizes all the versions of this method that have been presented in the literature. The mapping method is applied to group classification of various classes of Kolmogorov equations and of Fokker-Planck equations in the case of space dimension one. The equivalence groupoids and the equivalence groups of these classes are computed. The group classification problems for these classes with respect to the corresponding equivalence groups are reduced to finding all inequivalent solutions of heat equations with inequivalent potentials admitting Lie-symmetry extensions. This reduction allows us to exhaustively solve the group classification problems for the classes of Kolmogorov and Fokker-Planck equations with time-independent coefficients.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

    1096-0813

  • Volume of the periodical

    513

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    43

  • Pages from-to

    „126209-1“-„126209-43“

  • UT code for WoS article

    000796260000001

  • EID of the result in the Scopus database

    2-s2.0-85129246960