Mapping method of group classification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F22%3AA0000118" target="_blank" >RIV/47813059:19610/22:A0000118 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0022247X22002232" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022247X22002232</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2022.126209" target="_blank" >10.1016/j.jmaa.2022.126209</a>
Alternative languages
Result language
angličtina
Original language name
Mapping method of group classification
Original language description
We revisit the entire framework of group classification of differential equations. After introducing the notion of weakly similar classes of differential equations, we develop the mapping method of group classification for such classes, which generalizes all the versions of this method that have been presented in the literature. The mapping method is applied to group classification of various classes of Kolmogorov equations and of Fokker-Planck equations in the case of space dimension one. The equivalence groupoids and the equivalence groups of these classes are computed. The group classification problems for these classes with respect to the corresponding equivalence groups are reduced to finding all inequivalent solutions of heat equations with inequivalent potentials admitting Lie-symmetry extensions. This reduction allows us to exhaustively solve the group classification problems for the classes of Kolmogorov and Fokker-Planck equations with time-independent coefficients.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
1096-0813
Volume of the periodical
513
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
43
Pages from-to
„126209-1“-„126209-43“
UT code for WoS article
000796260000001
EID of the result in the Scopus database
2-s2.0-85129246960