Toeplitz operators on the weighted Bergman spaces of quotient domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F23%3AA0000128" target="_blank" >RIV/47813059:19610/23:A0000128 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0007449723001148" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0007449723001148</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bulsci.2023.103340" target="_blank" >10.1016/j.bulsci.2023.103340</a>
Alternative languages
Result language
angličtina
Original language name
Toeplitz operators on the weighted Bergman spaces of quotient domains
Original language description
Let G be a finite pseudoreflection group and omega subset of Cd be a bounded domain which is a G-space. We establish identities involving Toeplitz operators on the weighted Bergman spaces of omega and omega/G using invariant theory and representation theory of G. This, in turn, provides techniques to study algebraic properties of Toeplitz operators on the weighted Bergman space on omega/G. We specialize on the generalized zero-product problem and characterization of commuting pairs of Toeplitz operators. As a consequence, more intricate results on Toeplitz operators on the weighted Bergman spaces on some specific quotient domains (namely symmetrized polydisc, monomial polyhedron, Rudin's domain) have been obtained.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA21-27941S" target="_blank" >GA21-27941S: Function theory and related operators on complex domains</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin des Sciences Mathématiques
ISSN
0007-4497
e-ISSN
1952-4773
Volume of the periodical
188
Issue of the periodical within the volume
november
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
29
Pages from-to
„103340-1“-„103340-29“
UT code for WoS article
001088074500001
EID of the result in the Scopus database
2-s2.0-85173144656