All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Toeplitz operators on the weighted Bergman spaces of quotient domains

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F23%3AA0000128" target="_blank" >RIV/47813059:19610/23:A0000128 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0007449723001148" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0007449723001148</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.bulsci.2023.103340" target="_blank" >10.1016/j.bulsci.2023.103340</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Toeplitz operators on the weighted Bergman spaces of quotient domains

  • Original language description

    Let G be a finite pseudoreflection group and omega subset of Cd be a bounded domain which is a G-space. We establish identities involving Toeplitz operators on the weighted Bergman spaces of omega and omega/G using invariant theory and representation theory of G. This, in turn, provides techniques to study algebraic properties of Toeplitz operators on the weighted Bergman space on omega/G. We specialize on the generalized zero-product problem and characterization of commuting pairs of Toeplitz operators. As a consequence, more intricate results on Toeplitz operators on the weighted Bergman spaces on some specific quotient domains (namely symmetrized polydisc, monomial polyhedron, Rudin's domain) have been obtained.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA21-27941S" target="_blank" >GA21-27941S: Function theory and related operators on complex domains</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Bulletin des Sciences Mathématiques

  • ISSN

    0007-4497

  • e-ISSN

    1952-4773

  • Volume of the periodical

    188

  • Issue of the periodical within the volume

    november

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    29

  • Pages from-to

    „103340-1“-„103340-29“

  • UT code for WoS article

    001088074500001

  • EID of the result in the Scopus database

    2-s2.0-85173144656