All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Point-symmetry pseudogroup, Lie reductions and exact solutions of Boiti-Leon-Pempinelli system

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F24%3AA0000167" target="_blank" >RIV/47813059:19610/24:A0000167 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0167278924000320" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167278924000320</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.physd.2024.134081" target="_blank" >10.1016/j.physd.2024.134081</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Point-symmetry pseudogroup, Lie reductions and exact solutions of Boiti-Leon-Pempinelli system

  • Original language description

    We carry out extended symmetry analysis of the (1+2)-dimensional Boiti-Leon-Pempinelli system, which corrects, enhances and generalizes many results existing in the literature. The point-symmetry pseudogroup of this system is computed using an original megaideal-based version of the algebraic method. A number of meticulously selected differential constraints allow us to construct families of exact solutions of this system, which are significantly larger than all known ones. After classifying one- and two-dimensional subalgebras of the entire (infinite-dimensional) maximal Lie invariance algebra of this system, we study only its essential Lie reductions, which give solutions beyond the above solution families. Among reductions of the Boiti-Leon- Pempinelli system using differential constraints or Lie symmetries, we identify a number of famous partial and ordinary differential equations. We also show how all the constructed solution families can significantly be extended by Laplace and Darboux transformations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physica D: Nonlinear Phenomena

  • ISSN

    0167-2789

  • e-ISSN

    1872-8022

  • Volume of the periodical

    460

  • Issue of the periodical within the volume

    April

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    21

  • Pages from-to

    „134081-1“-„134081-21“

  • UT code for WoS article

    001202952600001

  • EID of the result in the Scopus database

    2-s2.0-85185562047