Point-symmetry pseudogroup, Lie reductions and exact solutions of Boiti-Leon-Pempinelli system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F24%3AA0000167" target="_blank" >RIV/47813059:19610/24:A0000167 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0167278924000320" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167278924000320</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physd.2024.134081" target="_blank" >10.1016/j.physd.2024.134081</a>
Alternative languages
Result language
angličtina
Original language name
Point-symmetry pseudogroup, Lie reductions and exact solutions of Boiti-Leon-Pempinelli system
Original language description
We carry out extended symmetry analysis of the (1+2)-dimensional Boiti-Leon-Pempinelli system, which corrects, enhances and generalizes many results existing in the literature. The point-symmetry pseudogroup of this system is computed using an original megaideal-based version of the algebraic method. A number of meticulously selected differential constraints allow us to construct families of exact solutions of this system, which are significantly larger than all known ones. After classifying one- and two-dimensional subalgebras of the entire (infinite-dimensional) maximal Lie invariance algebra of this system, we study only its essential Lie reductions, which give solutions beyond the above solution families. Among reductions of the Boiti-Leon- Pempinelli system using differential constraints or Lie symmetries, we identify a number of famous partial and ordinary differential equations. We also show how all the constructed solution families can significantly be extended by Laplace and Darboux transformations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physica D: Nonlinear Phenomena
ISSN
0167-2789
e-ISSN
1872-8022
Volume of the periodical
460
Issue of the periodical within the volume
April
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
„134081-1“-„134081-21“
UT code for WoS article
001202952600001
EID of the result in the Scopus database
2-s2.0-85185562047