All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Conservation laws and nonexistence of local Hamiltonian structures for generalized Infeld-Rowlands equation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F24%3AA0000174" target="_blank" >RIV/47813059:19610/24:A0000174 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0034487724000387" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0034487724000387</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/S0034-4877(24)00038-7" target="_blank" >10.1016/S0034-4877(24)00038-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Conservation laws and nonexistence of local Hamiltonian structures for generalized Infeld-Rowlands equation

  • Original language description

    For a certain natural generalization of the Infeld-Rowlands equation we prove nonexistence of nontrivial local Hamiltonian structures and nontrivial local symplectic structures of any order, as well as of nontrivial local Noether and nontrivial local inverse Noether operators of any order, and exhaustively characterize all cases when the equation in question admits nontrivial local conservation laws of any order; the method of establishing the above nonexistence results can be readily applied to many other PDEs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Reports on Mathematical Physics

  • ISSN

    0034-4877

  • e-ISSN

    1879-0674

  • Volume of the periodical

    93

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    14

  • Pages from-to

    287-300

  • UT code for WoS article

    001261842100001

  • EID of the result in the Scopus database

    2-s2.0-85196770105