All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Quasinormal modes, stability and shadows of a black hole in the 4D Einstein-Gauss-Bonnet gravity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19630%2F20%3AA0000008" target="_blank" >RIV/47813059:19630/20:A0000008 - isvavai.cz</a>

  • Result on the web

    <a href="https://epjc.epj.org/articles/epjc/abs/2020/11/10052_2020_Article_8639/10052_2020_Article_8639.html" target="_blank" >https://epjc.epj.org/articles/epjc/abs/2020/11/10052_2020_Article_8639/10052_2020_Article_8639.html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1140/epjc/s10052-020-08639-8" target="_blank" >10.1140/epjc/s10052-020-08639-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Quasinormal modes, stability and shadows of a black hole in the 4D Einstein-Gauss-Bonnet gravity

  • Original language description

    Recently a D-dimensional regularization approach leading to the non-trivial (3 + 1)-dimensional Einstein-Gauss-Bonnet (EGB) effective description of gravity was formulated which was claimed to bypass the Lovelock's theorem and avoid Ostrogradsky instability. Later it was shown that the regularization is possible only for some broad, but limited, class of metrics and Aoki et al. (arXiv:2005.03859) formulated a well-defined four-dimensional EGB theory, which breaks the Lorentz invariance in a theoretically consistent and observationally viable way. The black-hole solution of the first naive approach proved out to be also the exact solution of the well-defined theory. Here we calculate quasi-normal modes of scalar, electromagnetic and gravitational perturbations and find the radius of shadow for spherically symmetric and asymptotically flat black holes with Gauss-Bonnet corrections. We show that the black hole is gravitationally stable when (-16M(2) < alpha less than or similar to 0.6M(2)). The instability in the outer range is the eikonal one and it develops at high multipole numbers. The radius of the shadow R-Sh obeys the linear law with a remarkable accuracy.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10303 - Particles and field physics

Result continuities

  • Project

    <a href="/en/project/GA19-03950S" target="_blank" >GA19-03950S: Testing strong gravity via black holes</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Physical Journal C

  • ISSN

    1434-6044

  • e-ISSN

    1434-6052

  • Volume of the periodical

    80

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    „1049-1“-„1049-13“

  • UT code for WoS article

    000593720200003

  • EID of the result in the Scopus database

    2-s2.0-85095955055