Observational properties of puffy discs: radiative GRMHD spectra of mildly sub-Eddington accretion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19630%2F22%3AA0000176" target="_blank" >RIV/47813059:19630/22:A0000176 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1093/mnras/stac1317" target="_blank" >https://doi.org/10.1093/mnras/stac1317</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3847/2041-8213/ab48f5" target="_blank" >10.3847/2041-8213/ab48f5</a>
Alternative languages
Result language
angličtina
Original language name
Observational properties of puffy discs: radiative GRMHD spectra of mildly sub-Eddington accretion
Original language description
Numerical general relativistic radiative magnetohydrodynamic simulations of accretion discs around a stellar-mass black hole with a luminosity above 0.5 of the Eddington value reveal their stratified, elevated vertical structure. We refer to these thermally stable numerical solutions as puffy discs. Above a dense and geometrically thin core of dimensionless thickness h/r ∼ 0.1, crudely resembling a classic thin accretion disc, a puffed-up, geometrically thick layer of lower density is formed. This puffy layer corresponds to h/r ∼ 1.0, with a very limited dependence of the dimensionless thickness on the mass accretion rate. We discuss the observational properties of puffy discs, particularly the geometrical obscuration of the inner disc by the elevated puffy region at higher observing inclinations, and collimation of the radiation along the accretion disc spin axis, which may explain the apparent super-Eddington luminosity of some X-ray objects. We also present synthetic spectra of puffy discs, and show that they are qualitatively similar to those of a Comptonized thin disc. We demonstrate that the existing XSPEC spectral fitting models provide good fits to synthetic observations of puffy discs, but cannot correctly recover the input black hole spin. The puffy region remains optically thick to scattering; in its spectral properties, the puffy disc roughly resembles that of a warm corona sandwiching the disc core. We suggest that puffy discs may correspond to X-ray binary systems of luminosities above 0.3 of the Eddington luminosity in the intermediate spectral states.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Monthly Notices of the Royal Astronomical Society
ISSN
0035-8711
e-ISSN
—
Volume of the periodical
514
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
780-789
UT code for WoS article
000808232400010
EID of the result in the Scopus database
2-s2.0-85133586902