All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Quasinormal ringing of general spherically symmetric parametrized black holes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19630%2F22%3AA0000185" target="_blank" >RIV/47813059:19630/22:A0000185 - isvavai.cz</a>

  • Result on the web

    <a href="https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.104032" target="_blank" >https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.104032</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevD.105.104032" target="_blank" >10.1103/PhysRevD.105.104032</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Quasinormal ringing of general spherically symmetric parametrized black holes

  • Original language description

    The general parametrization of spherically symmetric and asymptotically flat black hole spacetimes in arbitrary metric theories of gravity was suggested in Rezzolla and Zhidenko [Phys. Rev. D 90, 084009 (2014)]. The parametrization is based on the continued fraction expansion in terms of the compact radial coordinate and has superior convergence and a strict hierarchy of parameters. It is known that some observable quantities, related to particle motion around the black hole, such as the eikonal-quasinormal modes, radius of the shadow, frequency at the innermost stable circular orbit, and others, depend mostly on only a few of the lowest coefficients of the parametrization. Here we continue this approach by studying the dominant (low-lying) quasinormal modes for such generally parametrized black holes. We show that, due to the hierarchy of parameters, the dominant quasinormal frequencies are also well determined by only the first few coefficients of the expansion for the so-called moderate black hole geometries. The latter are characterized by a relatively slow change of the metric functions in the radiation zone near the black hole. The nonmoderate metrics, which change strongly between the event horizon and the innermost stable circular orbit, are usually characterized by echoes or by the distinctive (from the Einstein case) quasinormal ringing which does not match the current observational data. Therefore, the compact description of a black hole spacetime in terms of the truncated general parametrization is an effective formalism for testing strong gravity and imposing constraints on allowed black hole geometries.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    <a href="/en/project/GA19-03950S" target="_blank" >GA19-03950S: Testing strong gravity via black holes</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Review D

  • ISSN

    2470-0010

  • e-ISSN

  • Volume of the periodical

    105

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    „104032-1“-„104032-10“

  • UT code for WoS article

    000809432200008

  • EID of the result in the Scopus database

    2-s2.0-85131335726