Trends in torques acting on the star during a star-disk magnetospheric interaction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19630%2F23%3AA0000264" target="_blank" >RIV/47813059:19630/23:A0000264 - isvavai.cz</a>
Result on the web
<a href="https://www.aanda.org/articles/aa/full_html/2023/11/aa43517-22/aa43517-22.html" target="_blank" >https://www.aanda.org/articles/aa/full_html/2023/11/aa43517-22/aa43517-22.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/202243517" target="_blank" >10.1051/0004-6361/202243517</a>
Alternative languages
Result language
angličtina
Original language name
Trends in torques acting on the star during a star-disk magnetospheric interaction
Original language description
Aims. We assess the modification of angular momentum transport in various configurations of star-disk accreting systems based on numerical simulations with different parameters. In particular, we quantify the torques exerted on a star by the various components of the flow and field in our simulations of a star-disk magnetospheric interaction. Methods. In a suite of resistive and viscous numerical simulations, we obtained results using different stellar rotation rates, dipole magnetic field strengths, and resistivities. We probed a part of the parameter space with slowly rotating central objects, up to 20% of the Keplerian rotation rate at the equator. Different components of the flow in star-disk magnetospheric interaction were considered in the study: a magnetospheric wind (i.e., the "stellar wind") ejected outwards from the stellar vicinity, matter infalling onto the star through the accretion column, and a magnetospheric ejection launched from the magnetosphere. We also took account of trends in the total torque in the system and in each component individually. Results. We find that for all the stellar magnetic field strengths, B-star, the anchoring radius of the stellar magnetic field in the disk is extended with increasing disk resistivity. The torque exerted on the star is independent of the stellar rotation rate, Omega(star), in all the cases without magnetospheric ejections. In cases where such ejections are present, there is a weak dependence of the anchoring radius on the stellar rotation rate, with both the total torque in the system and torque on the star from the ejection and infall from the disk onto the star proportional to Omega B-star(3). The torque from a magnetospheric ejection is proportional to Omega(4)(star). Without the magnetospheric ejection, the spin-up of the star switches to spin-down in cases involving a larger stellar field and faster stellar rotation. The critical value for this switch is about 10% of the Keplerian rotation rate.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
<a href="/en/project/GX21-06825X" target="_blank" >GX21-06825X: Accreting Black Holes in the new era of X-ray polarimetry missions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ASTRONOMY & ASTROPHYSICS
ISSN
0004-6361
e-ISSN
—
Volume of the periodical
679
Issue of the periodical within the volume
Nov 2023
Country of publishing house
FR - FRANCE
Number of pages
14
Pages from-to
„A16-1“-„A16-14“
UT code for WoS article
001096229100009
EID of the result in the Scopus database
2-s2.0-85176357192