All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Black hole in a combined magnetic field: Ionized accretion disks in the jetlike and looplike configurations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19630%2F24%3AA0000345" target="_blank" >RIV/47813059:19630/24:A0000345 - isvavai.cz</a>

  • Result on the web

    <a href="https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.063005" target="_blank" >https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.063005</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevD.109.063005" target="_blank" >10.1103/PhysRevD.109.063005</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Black hole in a combined magnetic field: Ionized accretion disks in the jetlike and looplike configurations

  • Original language description

    Magnetic fields surrounding black holes are responsible for various astrophysical phenomena related to accretion processes and relativistic jets. Depending on the source, the configuration of the field lines may differ significantly, affecting the trajectories of charged particles and the corresponding observables. Usually, the magnetic fields around black holes are modeled within a single source or current generating the field. However, magnetic fields can have more than a single origin, being a combination of different fields, such as, e.g., that of an accretion disk and external large-scale or Galactic ones. In this paper, we propose a combined magnetic field solution given by the superposition of the uniform and Blandford-Znajek splitmonopole magnetic fields in a strong gravity regime of the Schwarzschild black hole. We show that when the combined magnetic field components are aligned, the resulting field is of a paraboloidal jetlike shape. Such a configuration is supported by relativistic jet observations and is often utilized in general relativistic magnetohydrodynamical simulations. In the opposite orientation of the two field components, we observe looplike field structures magnetically connecting the black hole with an accretion disk and the magnetic null points, which can be related to the regions of magnetic reconnection. In the combined magnetic field configurations, we analyze the dynamics of charged particles, study their stability conditions, and find the locations of stable off -equatorial structures close to the symmetry axis. Finally, we consider an ionization of Keplerian accretion disk as a particular scenario of particle scattering. From the numerical experiments, we conclude that charged particles in the jetlike combination show a strong tendency to escape from the black hole, which is not observed in the case of individual fields. In contrast, the looplike combination supports accretion of charged particles into the black hole.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    <a href="/en/project/GA23-07043S" target="_blank" >GA23-07043S: Black Hole Magnetosphere</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Review D

  • ISSN

    2470-0010

  • e-ISSN

  • Volume of the periodical

    109

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    „063005-1“-„063005-18“

  • UT code for WoS article

    001196566600011

  • EID of the result in the Scopus database

    2-s2.0-85186870940