All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evolution of microstructure and mechanical properties in steels during isothermal holding in the region of bainitic transformation temperature in dependence on silicon content

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23210%2F17%3A43932706" target="_blank" >RIV/49777513:23210/17:43932706 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evolution of microstructure and mechanical properties in steels during isothermal holding in the region of bainitic transformation temperature in dependence on silicon content

  • Original language description

    Under isothermal treatment conditions, bainite transformation involves decomposition of austenite into a non-equilibrium structure consisting of needles of super-saturated bainitic ferrite and carbide precipitates. Similarly to martensitic transformation, bainitic ferrite forms by shear mechanism. Owing to relatively low temperature, only interstitial elements, predominantly carbon, can migrate by diffusion. Depending on the transformation tempera-ture, carbon migrates from ferrite and forms carbides, either within bainitic ferrite needles and at the interphase interface between bainitic ferrite and austenite, or only within bainitic ferrite needles. In conventional steels, bainite transformation continues until the decomposition of austenite phase is almost complete. If the steel contains enough silicon, carbide precipitation may be suppressed or even prevented altogether. In such case, carbon which diffuses from the needles of bainitic ferrite may enrich adjacent austenite areas. Depending on heat treatment conditions, the carbon-enriched austenite may become sufficiently stable to resist decomposition and remain in the microstruc-ture.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/LO1502" target="_blank" >LO1502: Development of Regional Technological Institute</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Manufacturing Technology

  • ISSN

    1213-2489

  • e-ISSN

  • Volume of the periodical

    17

  • Issue of the periodical within the volume

    4/2017

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    6

  • Pages from-to

    549-555

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85029561133