All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Influence of chemical composition and parameters of heat treatment on the mechanical properties and microstructure of TRIP steels

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23210%2F20%3A43955770" target="_blank" >RIV/49777513:23210/20:43955770 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1757-899X/723/1/012004" target="_blank" >https://iopscience.iop.org/article/10.1088/1757-899X/723/1/012004</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1757-899X/723/1/012004" target="_blank" >10.1088/1757-899X/723/1/012004</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Influence of chemical composition and parameters of heat treatment on the mechanical properties and microstructure of TRIP steels

  • Original language description

    Good mechanical properties of steels, in which appropriate heat treatment can produce mixed hardening structures, make them candidates for a broad range of applications, namely in the automotive industry. TRIP steels (in which transformation-induced plasticity operates) with a carbon content of approximately 0.2% are one such class of steels. Heat treatment of these steels comprises two stages. The first involve heating to the intercritical region between the A1 and A3. It is followed by cooling to a bainitic transformation temperature and holding. The resulting mixed microstructure consist of ferrite, bainite and retained austenite. Thanks to the presence of ferrite and retained austenite, the ultimate strength and elongation can reach 1500 MPa and 25-40%, respectively. The experiments presented in this paper were performed on two steels whose chemistries were specially adjusted to support formation of TRIP microstructure. The main difference between them was the level of chromium. Intercritical annealing was carried out on both steels. Aspects of interest included mainly the effect of the cooling rate above the bainitic transformation temperature and the holding time on mechanical properties and final microstructure. The heat treatment led to microstructures ferrite, bainite and retained austenite. The strength was under 1100 MPa and elongation reached 28%.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IOP Conference Series: Materials Science and Engineering

  • ISBN

  • ISSN

    1757-8981

  • e-ISSN

    1757-899X

  • Number of pages

    8

  • Pages from-to

  • Publisher name

    IOP Publishing LTD

  • Place of publication

    Bristol

  • Event location

    Plzeň

  • Event date

    Sep 10, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article