Surface Pretreatments of AA5083 Aluminum Alloy with Enhanced Corrosion Protection for Cerium-Based Conversion Coatings Application: Combined Experimental and Computational Analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23210%2F21%3A43963226" target="_blank" >RIV/49777513:23210/21:43963226 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/1420-3049/26/24/7413" target="_blank" >https://www.mdpi.com/1420-3049/26/24/7413</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/molecules26247413" target="_blank" >10.3390/molecules26247413</a>
Alternative languages
Result language
angličtina
Original language name
Surface Pretreatments of AA5083 Aluminum Alloy with Enhanced Corrosion Protection for Cerium-Based Conversion Coatings Application: Combined Experimental and Computational Analysis
Original language description
The effects of surface pretreatments on the cerium-based conversion coating applied on an AA5083 aluminum alloy were investigated using a combination of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), polarization testing, and electrochemical impedance spectroscopy. Two steps of pretreatments containing acidic or alkaline solutions were applied to the surface to study the effects of surface pretreatments. Among the pretreated samples, the sample prepared by the pretreatment of the alkaline solution then acid washing presented higher corrosion protection (~3 orders of magnitude higher than the sample without pretreatment). This pretreatment provided a more active surface for the deposition of the cerium layer and provided a more suitable substrate for film formation, and made a more uniform film. The surface morphology of samples confirmed that the best surface coverage was presented by alkaline solution then acid washing pretreatment. The presence of cerium in the (EDS) analysis demonstrated that pretreatment with the alkaline solution then acid washing resulted in a higher deposition of the cerium layer on the aluminum surface. After selecting the best surface pretreatment, various deposition times of cerium baths were investigated. The best deposition time was achieved at 10 min, and after this critical time, a cracked film formed on the surface that could not be protective. The corrosion resistance of cerium-based conversion coatings obtained by electrochemical tests were used for training three computational techniques (artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and support vector machine regression (SVMR)) based on Pretreatment-1 (acidic or alkaline cleaning: pH (1)), Pretreatment-2 (acidic or alkaline cleaning: pH (2)), and deposition time in the cerium bath as an input. Various statistical criteria showed that the ANFIS model (R2 = 0.99, MSE = 48.83, and MAE = 3.49) could forecast the corrosion behavior of a cerium-based conversion coating more accurately than other models. Finally, due to the robust performance of ANFIS in modeling, the effect of each parameter was studied.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20501 - Materials engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MOLECULES
ISSN
1420-3049
e-ISSN
1420-3049
Volume of the periodical
26
Issue of the periodical within the volume
24
Country of publishing house
CH - SWITZERLAND
Number of pages
24
Pages from-to
nestrankovano
UT code for WoS article
000736836900001
EID of the result in the Scopus database
2-s2.0-85121026222