All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effect of tool temperature and dwell time in the tool for press hardening on the mechanical properties of modern high-strength steel with 3% Mn

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23210%2F23%3A43966050" target="_blank" >RIV/49777513:23210/23:43966050 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1742-6596/1045/1/012036" target="_blank" >https://iopscience.iop.org/article/10.1088/1742-6596/1045/1/012036</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1742-6596/2572/1/012014" target="_blank" >10.1088/1742-6596/2572/1/012014</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effect of tool temperature and dwell time in the tool for press hardening on the mechanical properties of modern high-strength steel with 3% Mn

  • Original language description

    The production of sheet safety parts for car bodies is currently carried out using press hardening technology. This technology enables the creation of complex-shaped profiles even from high-strength steels without a significant spring-back effect. In combination with modern high-strength steels, which have retained austenite in their structure, it is possible to achieve high ultimate strength and ductility values. As a result, these parts are used in bodywork areas with high energy absorption requirements during impact. To achieve the required mechanical properties, suitable processing parameters must be selected. High-strength steel with 0.2%C, 3%Mn and 2%Al was used for the experiment. Press-hardening was carried out in a tool fixed in a hydraulic press and can be heated up to temperatures around 450 °C. Different tool temperatures of room temperature and 425 °C were tested and different holding times in the tool from 1 s to 600 s. After hardening in a tool at RT, the ultimate strength of about 1400 MPa with a ductility of 18 % was obtained. But quenching and holding in the preheated tool caused the ductility to increase to 28% with a drop in ultimate strength to 1050 MPa.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/EF19_073%2F0016931" target="_blank" >EF19_073/0016931: Improving the quality of the internal grant structure at UWB</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Journal of Physics: Conference Series

  • ISBN

  • ISSN

    1742-6588

  • e-ISSN

    1742-6596

  • Number of pages

    7

  • Pages from-to

  • Publisher name

    IOP Publishing Ltd.

  • Place of publication

    Bristol

  • Event location

    Plzeň

  • Event date

    Sep 6, 2022

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article