All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Using Adaptive Neural Networks for Optimising Discrete Event Simulation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23210%2F24%3A43972390" target="_blank" >RIV/49777513:23210/24:43972390 - isvavai.cz</a>

  • Alternative codes found

    RIV/49777513:23420/24:43972390 RIV/49777513:23520/24:43972390

  • Result on the web

    <a href="https://www.ijsimm.com/Full_Papers/Fulltext2024/text23-2_678.pdf" target="_blank" >https://www.ijsimm.com/Full_Papers/Fulltext2024/text23-2_678.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2507/IJSIMM23-2-678" target="_blank" >10.2507/IJSIMM23-2-678</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Using Adaptive Neural Networks for Optimising Discrete Event Simulation

  • Original language description

    The paper presents the use of adaptive neural networks for carrying out simulation optimisation using digital models (discrete event simulation models) created in accordance with the Industry 4.0 concept. The digital models reflect different problems in industrial engineering. The simulation optimisers use an adaptive neural network to find the best settings of the digital models according to defined objective functions for each model. We compared the effectiveness (using different evaluation criteria) of the adaptive neural network (ANN) optimisation method used on 6 different discrete event simulation models. We compared adaptive neural networks with 11 optimisation methods - pseudo gradient, metaheuristic, evolutionary and swarm optimisation methods (and their combinations). The ANN method demonstrated the ability to efficiently find the global optimum of the objective function in different cases of the objective function - the ANN method is in the top 5 best tested methods from the 12 optimisation methods.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    21100 - Other engineering and technologies

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Simulation Modelling

  • ISSN

    1726-4529

  • e-ISSN

    1996-8566

  • Volume of the periodical

    23

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    AT - AUSTRIA

  • Number of pages

    12

  • Pages from-to

    227-238

  • UT code for WoS article

    001244991400003

  • EID of the result in the Scopus database

    2-s2.0-85197863316