Using Adaptive Neural Networks for Optimising Discrete Event Simulation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23210%2F24%3A43972390" target="_blank" >RIV/49777513:23210/24:43972390 - isvavai.cz</a>
Alternative codes found
RIV/49777513:23420/24:43972390 RIV/49777513:23520/24:43972390
Result on the web
<a href="https://www.ijsimm.com/Full_Papers/Fulltext2024/text23-2_678.pdf" target="_blank" >https://www.ijsimm.com/Full_Papers/Fulltext2024/text23-2_678.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2507/IJSIMM23-2-678" target="_blank" >10.2507/IJSIMM23-2-678</a>
Alternative languages
Result language
angličtina
Original language name
Using Adaptive Neural Networks for Optimising Discrete Event Simulation
Original language description
The paper presents the use of adaptive neural networks for carrying out simulation optimisation using digital models (discrete event simulation models) created in accordance with the Industry 4.0 concept. The digital models reflect different problems in industrial engineering. The simulation optimisers use an adaptive neural network to find the best settings of the digital models according to defined objective functions for each model. We compared the effectiveness (using different evaluation criteria) of the adaptive neural network (ANN) optimisation method used on 6 different discrete event simulation models. We compared adaptive neural networks with 11 optimisation methods - pseudo gradient, metaheuristic, evolutionary and swarm optimisation methods (and their combinations). The ANN method demonstrated the ability to efficiently find the global optimum of the objective function in different cases of the objective function - the ANN method is in the top 5 best tested methods from the 12 optimisation methods.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
21100 - Other engineering and technologies
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Simulation Modelling
ISSN
1726-4529
e-ISSN
1996-8566
Volume of the periodical
23
Issue of the periodical within the volume
2
Country of publishing house
AT - AUSTRIA
Number of pages
12
Pages from-to
227-238
UT code for WoS article
001244991400003
EID of the result in the Scopus database
2-s2.0-85197863316