All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Adaptive importance sampling for Bayesian inference in Gaussian process models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F14%3A43922643" target="_blank" >RIV/49777513:23220/14:43922643 - isvavai.cz</a>

  • Result on the web

    <a href="http://10.3182/20140824-6-ZA-1003.02352" target="_blank" >http://10.3182/20140824-6-ZA-1003.02352</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3182/20140824-6-ZA-1003.02352" target="_blank" >10.3182/20140824-6-ZA-1003.02352</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Adaptive importance sampling for Bayesian inference in Gaussian process models

  • Original language description

    Gaussian process (GP) models are nowadays considered among the standard tools in modern control system engineering. They are routinely used for model-based control, time- series prediction, modelling and estimation in engineering applications. While theunderlying theory is completely in line with the principles of Bayesian inference, in practice this property is lost due to approximation steps in the GP inference. In this paper we propose a novel inference algorithm for GP models, which relies on adaptive importance sampling strategy to numerically evaluate the intractable marginalization over the hyperparameters. This is required in the case of broad-peaked or multi-modal posterior distribution of the hyperparameters where the point approximations turn out to be insufficient. The benefits of the algorithm are that is retains the Bayesian nature of the inference, has sufficient convergence properties, relatively low computational load and does not require heavy prior knowledge due to

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JA - Electronics and optoelectronics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/ED2.1.00%2F03.0094" target="_blank" >ED2.1.00/03.0094: Regional Innovation Centre for Electrical Engineering (RICE)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 19th IFAC World Congress, 2014

  • ISBN

    978-3-902823-62-5

  • ISSN

    1474-6670

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    5011-5016

  • Publisher name

    Elsevier

  • Place of publication

    Amsterdam

  • Event location

    Cape Town

  • Event date

    Aug 24, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article