Short circuit forces acting on the shielded three-phase line
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F15%3A43926079" target="_blank" >RIV/49777513:23220/15:43926079 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Short circuit forces acting on the shielded three-phase line
Original language description
One of the serious tasks, that designer of heavy current equipment has to solve, is a sufficient mechanical fixing of electrical supply when exposed to short circuit forces. One method of reducing the values of the short circuit forces is the shielding of current-carrying conductors. Shielding is usually realized in such a way that the conductors are put in steel pipes of appropriate forms. This causes that short-circuit current carrying conductors are in a relatively weak magnetic field and, therefore,the Lorentz force acting on them is substantially weaker compared with unshielded conductors. The calculation of short-circuit forces for such a case was carried out for three-phase symmetrical line. The main disadvantage of the above method of shielding consists in the fact that eddy current losses produced in the shielding pipes contribute to heating of wires. Between the pipe and conductor, there is an air gap preventing the transfer of heat. The Lorentz forces acting on the wires we
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JA - Electronics and optoelectronics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 19th International Symposium on High Voltage Engineering (ISH 2015)
ISBN
978-80-261-0476-6
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
1-4
Publisher name
Západočeská univerzita
Place of publication
Plzeň
Event location
Plzeň, Česká republika
Event date
Aug 23, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—