Burnable absorber layer in HTR coated particles for OTTO fuel cycle
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F18%3A43953837" target="_blank" >RIV/49777513:23220/18:43953837 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Burnable absorber layer in HTR coated particles for OTTO fuel cycle
Original language description
High temperature reactor is loaded by fuel pebbles that slowly flow through the reactor core. Reactor operation is described by a continuous on-power refueling with two possible fuel cycles. Multi-pass scheme allows lower peak power density. Moreover, multiple passing through the core shifts power peak into central parts of the core. On the other hand, multi-pass scheme requires complicated refueling machine. Single-passing scheme known as OTTO cycle (Once-Through-Then-Out) avoids refueling machine with the disadvantage of high peak power density located at the top of the core. There are few paths for diminishing and shifting of the power peak - non-cylindrical core shapes, absorbing reflectors, thorium fuel, radial fuel zoning and burnable absorbers. From construction point of view, burnable absorbers are the first choice. In contrast to LWR reactors, HTR reactor is randomly filled by hundred thousand fuel assemblies (pebbles), each fuel pebble contains thousands of coated particles stochastically embedded in the graphite matrix. Because of this double heterogeneity, fuel design studies should be based on both fuel assembly level as well as core level calculations. Standard LWR burnable absorber materials gadolinium, boron and erbium were analyzed for HTR, however, other materials are proposed for specific HTR conditions, mainly very high fuel discharge burnup. Coated layer created by burnable absorber is small, therefore, thermal and chemical compatibility with UO2 matrix is not needed and the choice of optimum material can be more focused on neutronics analysis. Monte Carlo approach with Serpent 2 code is used because of a specific random walk implementation that is distinctively faster than the standard ray tracing methods.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20305 - Nuclear related engineering; (nuclear physics to be 1.3);
Result continuities
Project
<a href="/en/project/TE01020455" target="_blank" >TE01020455: Centre for Advanced Nuclear Technologies (CANUT)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings : 27th International Conference Nuclear Energy for New Europe (NENE 2018)
ISBN
978-961-6207-45-4
ISSN
—
e-ISSN
neuvedeno
Number of pages
8
Pages from-to
"214.1"-"214.8"
Publisher name
Nuclear Society of Slovenia
Place of publication
Ljubljana
Event location
Portorož, Slovenia
Event date
Sep 10, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—