Measuring system for recuperation units
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F19%3A43955298" target="_blank" >RIV/49777513:23220/19:43955298 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/11025/35842" target="_blank" >http://hdl.handle.net/11025/35842</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1115/1.4043103" target="_blank" >10.1115/1.4043103</a>
Alternative languages
Result language
angličtina
Original language name
Measuring system for recuperation units
Original language description
The article is primarily concerned with the measurement of heat recovery units for different work environments. At present, great emphasis is placed on indoor air quality. The quality of the indoor environment greatly influences the concentration, response, and overall quality of work. This is important in the area of the main control room of the nuclear power plant. For efficient suction of these spaces, it is necessary to handle the entire control process so that the air is delivered to the desired location in proper quantity and quality. For this reason, it is necessary to know the properties of the used components (e.g., recuperator). To calculate the efficiency of heat recovery unit, it is necessary to measure temperature, humidity, and air volume in its individual parts. Based on these requirements, a measurement system was created to achieve the appropriate data for the further optimization process. The first part briefly describes the created measuring system primarily tested on SL-Thermo (Plattling, Germany) units produced by the Sudluft Systemtechnik (Plattling, Germany). The core of the system is based on an industrial programmable logic controller (PLC) in combination with LabVIEW (Austin, TX) software. The software can be used in laboratory condition or in the real operation. The next part is devoted to measurement of the heat recovery unit in laboratory condition, where the different operating states of the heat recovery unit were simulated. On the basis of the measurements made, a final evaluation was made and some structural modifications were recommended, which would increase the efficiency of the regenerative unit.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20704 - Energy and fuels
Result continuities
Project
<a href="/en/project/LQ1603" target="_blank" >LQ1603: Research for SUSEN</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Nuclear Engineering and Radiation Science
ISSN
2332-8983
e-ISSN
—
Volume of the periodical
5
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
5
Pages from-to
1-5
UT code for WoS article
000470245100009
EID of the result in the Scopus database
2-s2.0-85070820960