All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Measuring system for recuperation units

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F19%3A43955298" target="_blank" >RIV/49777513:23220/19:43955298 - isvavai.cz</a>

  • Result on the web

    <a href="http://hdl.handle.net/11025/35842" target="_blank" >http://hdl.handle.net/11025/35842</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1115/1.4043103" target="_blank" >10.1115/1.4043103</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Measuring system for recuperation units

  • Original language description

    The article is primarily concerned with the measurement of heat recovery units for different work environments. At present, great emphasis is placed on indoor air quality. The quality of the indoor environment greatly influences the concentration, response, and overall quality of work. This is important in the area of the main control room of the nuclear power plant. For efficient suction of these spaces, it is necessary to handle the entire control process so that the air is delivered to the desired location in proper quantity and quality. For this reason, it is necessary to know the properties of the used components (e.g., recuperator). To calculate the efficiency of heat recovery unit, it is necessary to measure temperature, humidity, and air volume in its individual parts. Based on these requirements, a measurement system was created to achieve the appropriate data for the further optimization process. The first part briefly describes the created measuring system primarily tested on SL-Thermo (Plattling, Germany) units produced by the Sudluft Systemtechnik (Plattling, Germany). The core of the system is based on an industrial programmable logic controller (PLC) in combination with LabVIEW (Austin, TX) software. The software can be used in laboratory condition or in the real operation. The next part is devoted to measurement of the heat recovery unit in laboratory condition, where the different operating states of the heat recovery unit were simulated. On the basis of the measurements made, a final evaluation was made and some structural modifications were recommended, which would increase the efficiency of the regenerative unit.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/LQ1603" target="_blank" >LQ1603: Research for SUSEN</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Nuclear Engineering and Radiation Science

  • ISSN

    2332-8983

  • e-ISSN

  • Volume of the periodical

    5

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    5

  • Pages from-to

    1-5

  • UT code for WoS article

    000470245100009

  • EID of the result in the Scopus database

    2-s2.0-85070820960