All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Simulation of ECG, blood pressure and ballistocardiographic signals

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F21%3A43961950" target="_blank" >RIV/49777513:23220/21:43961950 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s10470-021-01830-1" target="_blank" >https://link.springer.com/article/10.1007/s10470-021-01830-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10470-021-01830-1" target="_blank" >10.1007/s10470-021-01830-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Simulation of ECG, blood pressure and ballistocardiographic signals

  • Original language description

    The blood flow in human arterial system can be considered as a fluid dynamics problem. Simulation of blood flow will provide a better understanding of the physiology of human body. Simulation studies of blood flow in the diseased condition can help to diagnose the health problem easily and also have many applications in the areas such as surgical planning and design of medical devices. This paper presents a synthetic electrocardiogram (ECG), blood pressure signals (BP) and ballistocardiographic signal (BCG). Dynamical models of electrocardiogram and cardiovascular system are important in medicine because they can be used as approximation of the real patient. An example is the Windkessel model, which is often used for simulation. ECG, BP and BCG signals can be generated with different sampling frequencies, with different noise levels, with different shapes, filters etc. The paper is based on real data (Real data and identification methods can be used to create models), which are then used for models based on coupled oscillators. Models of the above-mentioned signals are generated by a microcontroller, which allows easy control and adjustment of the output signal and other experiments. The presented paper describes a device that was developed and used for educational purposes, especially for biomedical engineering.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

    <a href="/en/project/EF18_069%2F0009855" target="_blank" >EF18_069/0009855: Electrical Engineering Technologies with High-Level of Embedded Intelligence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING

  • ISSN

    0925-1030

  • e-ISSN

  • Volume of the periodical

    108

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    7

  • Pages from-to

    111-117

  • UT code for WoS article

    000638085200001

  • EID of the result in the Scopus database

    2-s2.0-85104074199