Neutronic Modelling and Computation of TEPLATOR Core using COMSOL Multiphysics Code
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F23%3A43970609" target="_blank" >RIV/49777513:23220/23:43970609 - isvavai.cz</a>
Result on the web
<a href="https://www.djs.si/upload/nene/2023/proceedings/Contribution_926_final.pdf" target="_blank" >https://www.djs.si/upload/nene/2023/proceedings/Contribution_926_final.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Neutronic Modelling and Computation of TEPLATOR Core using COMSOL Multiphysics Code
Original language description
TEPLATOR is an innovative heavy water small modular reactor concept that has the potential to meet district and industrial heating demands by harnessing nuclear energy as a heat source. This approach offers a substantial reduction in pollution and environmental impact compared to conventional heating methods reliant on fossil fuels.The primary objective of this article is to develop a two-dimensional, multi-group neutron diffusion model for the TEPLATOR reactor core using the COMSOL Multiphysics software package. COMSOL code employs a finite element numerical scheme to solve the partial differential equations associated with the neutron diffusion model. Monte Carlo transport code Serpent version 2.2.1 with the latest ENDF/B-VIII.0 nuclear data library is employed to calculate the multi-group constants for different reactor regions. These multi-group constants are then incorporated in the developed COMSOL neutron diffusion model to perform calculations using adaptive mesh refinement technique to enhance the accuracy of the solution. Neutronic behaviour of the TEPLATOR reactor core is obtained by calculating the criticality of the system and analysing the steady-state neutron-flux distribution profile. The calculated results are subsequently compared with those generated by the Serpent, providing a basis for validation and further analysis.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
20305 - Nuclear related engineering; (nuclear physics to be 1.3);
Result continuities
Project
<a href="/en/project/TK02030069" target="_blank" >TK02030069: Energy Storage in Electricity Generation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů