All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Non-representative sampled networks: Estimation of network structural properties by weighting

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23330%2F24%3A43971884" target="_blank" >RIV/49777513:23330/24:43971884 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0304407624000356" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0304407624000356</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jeconom.2024.105689" target="_blank" >10.1016/j.jeconom.2024.105689</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Non-representative sampled networks: Estimation of network structural properties by weighting

  • Original language description

    This paper analyzes statistical issues arising from non-representative samples of a network. Sampled network data could systematically bias the network properties and generate non-classical measurement error problems. Apart from the sampling rate and the elicitation procedure, the biases on network structural measures depend non-trivially on which subpopulations of nodes are missing with higher probability. We propose a methodology, adapting weighted estimators to networked contexts, which enables researchers to recover several network-level statistics and reduce the biases in the estimated network effects. The proposed weighted estimators are consistent and asymptotically normally distributed and have good performance in finite samples. Notably, our approach does not require users to assume any network formation model and is straightforward to implement.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    50401 - Sociology

Result continuities

  • Project

    <a href="/en/project/GA21-22796S" target="_blank" >GA21-22796S: Network diffusion and social cohesion: the role of the clustering coefficient</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Econometrics

  • ISSN

    0304-4076

  • e-ISSN

    1872-6895

  • Volume of the periodical

    240

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    20

  • Pages from-to

    1-20

  • UT code for WoS article

    001181492300001

  • EID of the result in the Scopus database

    2-s2.0-85185460966