Structure and properties of hard and superhard Zr-Cu-N nanocomposite coatings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F00%3A00053565" target="_blank" >RIV/49777513:23520/00:00053565 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Structure and properties of hard and superhard Zr-Cu-N nanocomposite coatings
Original language description
Zr-Cu-N nanocomposite films represent a new material of the type-nanocrystalline transition metal nitride (nc-MeN)/metal. In the present work, films were deposited onto steel substrates using unbalanced dc reactive magnetron sputtering of a Zr-Cu (62/38at.%) target. Film structure, chemical composition, mechanical and optical properties were investigated by means of X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, wavelengthdispersive electron probe microanalysis, depth-sensing microindentation and spectroscopic ellipsometry. It was found that (i) there is a strong correlation between the film structure, Cu content and film properties and (ii) either hard or superhard Zr-Cu-N films can be formed. The superhard coatings with hardness H > 40 GPa are characterized by a columnar structure, a strong 111 XRD peak from ZrN grains and no diffraction peaks from Cu.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BL - Plasma physics and discharge through gases
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2000
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Materials Science and Engineering
ISSN
09215093
e-ISSN
—
Volume of the periodical
1
Issue of the periodical within the volume
Č. A289
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—