Filtering, prediction, and smoothing with gaussian sum representation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F00%3A00056838" target="_blank" >RIV/49777513:23520/00:00056838 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Filtering, prediction, and smoothing with gaussian sum representation
Original language description
The paper dealth with the state estimation problem for discrete time nonlinear nonGaussian stochastic dynamic systems. A description of all random variables of the systém by the Gaussian sums probability density function is considered. This assumption enables to obtain an explicit exact or approximate solution of the three basic types of the state estimation, i.e prediction, filtering and smoothing. Multistep prediction and smoothing for nonlinear and/or nonGaussian systems are newly presented. The stress is laid also on systematic presentation of the new and current results of an application of the Gaussian sums in the nonlinear state estimation problem.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/VS97159" target="_blank" >VS97159: Center for research in the field of cybernetic systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2000
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Filtering, prediction, and smoothing with gaussian sum representation
ISBN
—
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
—
Publisher name
IFAC - OMNIPRESS
Place of publication
Santa Barbara
Event location
—
Event date
—
Type of event by nationality
—
UT code for WoS article
—