Nonlinear boundary value problems with asymmetric nonlinearities - periodic solutions and the Fucik spectrum
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F03%3A00000247" target="_blank" >RIV/49777513:23520/03:00000247 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Nonlinear boundary value problems with asymmetric nonlinearities - periodic solutions and the Fucik spectrum
Original language description
The whole thesis is devoted to problems containing so called jumping nonlinearities. This type of nonlinearity can reflect a transition between two media or can model a jump in properties of two media crossing their mutual boundary line. The precise description of the solution set of an ODE periodic problem with an asymmetric nonlinearity is given with respect to all its parameters. The existence of multiple periodic solutions is proved for an ODE periodic problem with a perturbed right-hand side. Bo th previous results are applied to two mathematical models. In the case of the model of a suspension bridge, the importance of the Fucik spectrum is shown, the correspondence of points of resonance and asymptotic bifurcation points is given. Some branch es of the Fucik spectrum for a wave operator are explored using a continuation shooting method. Moreover, some qualitative properties of the Fucik spectrum are explored, which are not observable in the case of ordinary differential operato
Czech name
—
Czech description
—
Classification
Type
B - Specialist book
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F03%2F0671" target="_blank" >GA201/03/0671: Qualitative and numerical analysis of nonlinear differential equations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
—
Number of pages
194
Publisher name
Neuveden
Place of publication
Plzeň
UT code for WoS book
—