Plagiarism Detection Based on Singular Value Decomposition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F08%3A00502249" target="_blank" >RIV/49777513:23520/08:00502249 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Plagiarism Detection Based on Singular Value Decomposition
Original language description
Plagiarism is widely spread problem that is the main focus of interest these days. In this paper, we propose a new method solving associations of phrases contained in text documents. This method, called SVDPPlag, employs Singular Value Decomposition forthis purpose. Further, we discuss other approaches to plagiarism detection and compare them with our method. To examine the efficiency of plagiarism detection methods, we used an experimental corpus of 950 text documents about politics, which were created from the standard CTK corpus. The experiments indicate that our approach significantly improves the accuracy of plagiarism detection and overcomes other methods.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/2C06009" target="_blank" >2C06009: Complex knowledge base tools for natural language communication with the semantic web</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Natural Language Processing, Proceedings
ISBN
978-3-540-85286-5
ISSN
—
e-ISSN
—
Number of pages
12
Pages from-to
—
Publisher name
Springer
Place of publication
Berlin
Event location
—
Event date
—
Type of event by nationality
—
UT code for WoS article
000258935200011