Estimation of state and measurement noise covariance matrices by multi-step prediction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F08%3A00502295" target="_blank" >RIV/49777513:23520/08:00502295 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Estimation of state and measurement noise covariance matrices by multi-step prediction
Original language description
Estimation of noise covariance matrices for linear or nonlinear stochastic dynamic systems is treated. The novel off-line technique for estimation of the covariance matrices of the state and measurement noises is designed. The technique is based on the multi-step prediction error and on knowledge of the system initial condition and it takes an advantage of the well-known standard relations from the area of state estimation techniques and least square method. The theoretical results are illustrated in numerical examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0572" target="_blank" >1M0572: Data, algorithms, decision making</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IFAC Proceedings Volumes (IFAC-PapersOnline)
ISSN
1474-6670
e-ISSN
—
Volume of the periodical
17
Issue of the periodical within the volume
1
Country of publishing house
KR - KOREA, REPUBLIC OF
Number of pages
6
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—