Inverted Ball as Noundary-constraint for Voronoi Diagrams of 3D Spheres
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F09%3A00502677" target="_blank" >RIV/49777513:23520/09:00502677 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Inverted Ball as Noundary-constraint for Voronoi Diagrams of 3D Spheres
Original language description
We show how to avoid infinite cells in Voronoi diagrams of 3D spheres. Infinite cells are unbounded cells at the convex-hull boundary of the input set. These cells can have Voronoi edges going to infinity or contain Voronoi vertices that are very distantfrom the convex hull. If our interest in parts of a diagram decreases as the distance from the convex hull increases or if we do not want to handle infinity, it might be useful to introduce a boundary constraint. We propose a constraint of extending theinput set by a single inverted ball. When this ball encloses the entire input set, it stops any edge that would go to infinity otherwise. This approach only approximates the convex hull of the original input set. It is suitable for tracing-algorithms used for construction of these diagrams.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0097" target="_blank" >GA201/09/0097: Triangulated models in service of haptic and virtual reality</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů