Convergence of variational eigenvalues and eigenfunctions to the Dirichlet problem for the p-Laplacian in domains with fine-grained boundary
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A00503271" target="_blank" >RIV/49777513:23520/10:00503271 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/10:00349633
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Convergence of variational eigenvalues and eigenfunctions to the Dirichlet problem for the p-Laplacian in domains with fine-grained boundary
Original language description
We study the problem of the homogenization of Dirichlet eigenvalue problems for the p-Laplace operator in a sequence of perforated domains with fine-grained boundary. Using the asymptotic expansion method, we derive the homogenized problem for the new equation with an additional term of capacity type. Moreover, we show that a sequence of eigenvalues for the problem in perforated domains converges to the corresponding critical levels of the homogenized problem.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the Royal Society of Edinburgh Section A
ISSN
0308-2105
e-ISSN
—
Volume of the periodical
140
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
24
Pages from-to
—
UT code for WoS article
000279185300006
EID of the result in the Scopus database
—