A note on packing chromatic number of the square lattics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A00503291" target="_blank" >RIV/49777513:23520/10:00503291 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A note on packing chromatic number of the square lattics
Original language description
The concept of a packing colouring is related to a frequency assignment problem. The packing chromatix number X_p(G) of a graph G is the smallest integer k such that the vertex set V (G) can be partitioned into disjoint classes X_1,..., X_k, where vertices in X_i have pairwise distance greater than i. In this note we improve the upper bound on the packing chromatic number of the square lattice.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Combinatorics
ISSN
1077-8926
e-ISSN
—
Volume of the periodical
17
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—