G^1 Hermite interpolation by PH cubics revisited
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A00503575" target="_blank" >RIV/49777513:23520/10:00503575 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
G^1 Hermite interpolation by PH cubics revisited
Original language description
This paper deals with G^1 Hermite interpolation by the Tschirnhausen cubic. In Meek and Walton (1997a), the explicit formulas for finding an arc of Tschirnhausen cubic which interpolates given Hermite interpolation data were given. In this paper, we extend these results to more general input data and refine on the results presented in Meek and Walton (1997a). Furthermore, we present a thorough analysis of the number and the quality of the interpolants; particularly if they contain a loop or not.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computer Aided Geometric Design
ISSN
0167-8396
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
8
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—