Czech HMM-Based Speech Synthesis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A00503716" target="_blank" >RIV/49777513:23520/10:00503716 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Czech HMM-Based Speech Synthesis
Original language description
In this paper, first experiments on statistical parametric HMM-based speech synthesis for the Czech language are described. In this synthesis method, trajectories of speech parameters are generated from the trained hidden Markov models. A final speech waveform is synthesized from those speech parameters. In our experiments, spectral properties were represented by mel cepstrum coefficients. For the waveform synthesis, the corresponding MLSA filter excited by pulses or noise was utilized. Beside that basic setup, a high-quality analysis/synthesis system STRAIGHT was employed for more sophisticated speech representation. For a more robust model parameter estimation, HMMs are clustered by using decision tree-based context clustering algorithm. For this purpose, phonetic and prosodic contextual factors proposed for the Czech language are taken into account. The created clustering trees are also employed for synthesis of speech units unseen within the training stage. The evaluation by subjec
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Artificial Intelligence
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
2010
Issue of the periodical within the volume
6231
Country of publishing house
DE - GERMANY
Number of pages
8
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—