Non-stationary vibrations of a thin viscoelastic disc
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A00503891" target="_blank" >RIV/49777513:23520/10:00503891 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Non-stationary vibrations of a thin viscoelastic disc
Original language description
This work deals with the analytical solution of the system of two hyperbolic partial integro-differential equations. This system describes non-stationary wave phenomena in a thin viscoelastic disc of finite radius. Non-stationary in plane vibrations of the disc are investigated for the case of radial excitation acting on the part of the disc boundary. The method of integral transforms and the Fourier method are used for the derivation of the Laplace transforms of required displacement components. With respect to the complexity of integral transforms obtained, numerical approach to the inverse Laplace transform is used. Spatio-temporal distribution of radial and circumferential displacement components represent main results of this work.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
BI - Acoustics and oscillation
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP101%2F09%2FP082" target="_blank" >GP101/09/P082: Analytical, numerical and experimental investigation of non-stationary state of stress in a viscoelastic disc</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů