Adaptation of a Feedforward Artificial Neural Network Using a Linear Transform
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A00504218" target="_blank" >RIV/49777513:23520/10:00504218 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Adaptation of a Feedforward Artificial Neural Network Using a Linear Transform
Original language description
In this paper we present a novel method for adaptation of a multi-layer perceptron neural network (MLP ANN). Nowadays, the adaptation of the ANN is usually done as an incremental retraining either of a subset or the complete set of the ANN parameters. However, since sometimes the amount of the adaptation data is quite small, there is a fundamental drawback of such approach -- during retraining, the network parameters can be easily overfitted to the new data. There certainly are techniques that can helpovercome this problem (early-stopping, cross-validation), however application of such techniques leads to more complex and possibly more data hungry training procedure. The proposed method approaches the problem from a different perspective. We use the fact that in many cases we have an additional knowledge about the problem. Such additional knowledge can be used to limit the dimensionality of the adaptation problem. We applied the proposed method on speaker adaptation of a phoneme recog
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
2010
Issue of the periodical within the volume
6231
Country of publishing house
DE - GERMANY
Number of pages
8
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—