All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multitarget Tracking Performance Analysis Using the Non-Credibility Index in the Nonlinear Estimation Framework (NEF) Toolbox

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A43896380" target="_blank" >RIV/49777513:23520/10:43896380 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/NAECON.2010.5712932" target="_blank" >http://dx.doi.org/10.1109/NAECON.2010.5712932</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/NAECON.2010.5712932" target="_blank" >10.1109/NAECON.2010.5712932</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multitarget Tracking Performance Analysis Using the Non-Credibility Index in the Nonlinear Estimation Framework (NEF) Toolbox

  • Original language description

    Target tracking, nonlinear control, and fault detection are typically evaluated with only a Root Mean Square (RMS). RMS is an absolute measurement of the system performance and does not provide a statistic as to the tracker, controller, or fault detection algorithmic performance. For this paper, we investigate the noncredibility index (NCI) and average normalized estimation error square (ANEES) for nonlinear estimation for the Kalman Filter (KF), the Central Difference Filter (DD1), the unscented Kalmanfilter (UKF), and the particle filter (PF). Fault detection and target track performance is dependent on target maneuvers, sensor errors, model parameters, and state estimation which need to be understood relative to the filter performance versus the absolute performance (i.e. root mean square) of the system. Utilizing the developments of the Nonlinear Estimation Framework (NEF) toolbox, we develop methods of nonlinear relative comparison performance between nonlinear filters in a unifi

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BC - Theory and management systems

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceeding of National Aerospace and Electronics Conference 2010

  • ISBN

    978-1-4244-6578-1

  • ISSN

    0547-3578

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    107-115

  • Publisher name

    Institute of Electrical and Electronics Engineers ( IEEE )

  • Place of publication

    345 E 47TH ST, NEW YORK, NY 10017 USA

  • Event location

    Fairborn, USA

  • Event date

    Jul 14, 2010

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000294969100018