Extremal Graphs without Cycles of Length 8 or Less
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F11%3A43896952" target="_blank" >RIV/49777513:23520/11:43896952 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.endm.2011.10.003" target="_blank" >http://dx.doi.org/10.1016/j.endm.2011.10.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.endm.2011.10.003" target="_blank" >10.1016/j.endm.2011.10.003</a>
Alternative languages
Result language
angličtina
Original language name
Extremal Graphs without Cycles of Length 8 or Less
Original language description
Let ex(n; t) denote the maximum number of edges in a graph G having order n without cycles of length t or less. We prove ex(23; 8) = 28, ex(24; 8) = 20 and ex(25; 8) = 30. Furthermore, we present new lower and upper bounds for n ? 49 and the extremal numbers when known.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Notes in Discrete Mathematics
ISSN
1571-0653
e-ISSN
—
Volume of the periodical
38
Issue of the periodical within the volume
112
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
6
Pages from-to
615-620
UT code for WoS article
—
EID of the result in the Scopus database
—