Local Binary Pattern Based Features for Sign Language Recognition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F11%3A43898225" target="_blank" >RIV/49777513:23520/11:43898225 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1134/S1054661811020416" target="_blank" >http://dx.doi.org/10.1134/S1054661811020416</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1134/S1054661811020416" target="_blank" >10.1134/S1054661811020416</a>
Alternative languages
Result language
angličtina
Original language name
Local Binary Pattern Based Features for Sign Language Recognition
Original language description
In this paper we focus on appearance features describing the manual component of Sign Language particularly the Local Binary Patterns. We compare the performance of these features with geometric moments describing the trajectory and shape of hands. Sincethe non-manual component is also very important for sign recognition we localize facial landmarks via Active Shape Model combined with Landmark detector that increases the robustness of model fitting. We test the recognition performance of individual features and their combinations on a database consisting of 11 signers and 23 signs with several repetitions. Local Binary Patterns outperform the geometric moments. When the features are combined we achieve a recognition rate up to 99.75% for signer dependent tests and 57.54% for signer independent tests.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ME08106" target="_blank" >ME08106: DIMAS-CZ Development of integral multimodal assistive system</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Pattern Recognition and Image Analysis
ISSN
1054-6618
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
3
Country of publishing house
RU - RUSSIAN FEDERATION
Number of pages
4
Pages from-to
398-401
UT code for WoS article
—
EID of the result in the Scopus database
—