Spherical quadratic Bézier triangles with chord length parameterization and tripolar coordinates in space
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F11%3A43898295" target="_blank" >RIV/49777513:23520/11:43898295 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.cagd.2010.11.001" target="_blank" >http://dx.doi.org/10.1016/j.cagd.2010.11.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cagd.2010.11.001" target="_blank" >10.1016/j.cagd.2010.11.001</a>
Alternative languages
Result language
angličtina
Original language name
Spherical quadratic Bézier triangles with chord length parameterization and tripolar coordinates in space
Original language description
We consider special rational triangular Bézier surfaces of degree two on the sphere in standard form and show that these surfaces are parameterized by chord length. More precisely, it is shown that the ratios of the three distances of a point to the patch vertices and the ratios of the distances of the parameter point to the three vertices of the (suitably chosen) domain triangle are identical. This observation extends an observation of Farin (2006) about rational quadratic curves representing circles to the case of surfaces. In addition, we discuss the relation to tripolar coordinates.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computer Aided Geometric Design
ISSN
0167-8396
e-ISSN
—
Volume of the periodical
28
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
8
Pages from-to
127-134
UT code for WoS article
—
EID of the result in the Scopus database
—