Computation of Minimum Energy Paths for Quasi-Linear Problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F11%3A43911657" target="_blank" >RIV/49777513:23520/11:43911657 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10915-011-9462-x" target="_blank" >http://dx.doi.org/10.1007/s10915-011-9462-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10915-011-9462-x" target="_blank" >10.1007/s10915-011-9462-x</a>
Alternative languages
Result language
angličtina
Original language name
Computation of Minimum Energy Paths for Quasi-Linear Problems
Original language description
We investigate minimum energy paths of the quasi-linear problem with the p-Laplacian operator and a double-well potential. We adapt the String method of E, Ren, and Vanden-Eijnden (J. Chem. Phys. 126, 2007) to locate saddle-type solutions. In one-dimension, the String method is shown to find a minimum energy path that can align along one-dimensional ?ridges? of saddle-continua. We then apply the same method to locate saddle solutions and transition paths of the two-dimensional quasi-linear problem. Themethod developed is applicable to a general class of quasi-linear PDEs.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ME10093" target="_blank" >ME10093: Qualitative and quantitative analysis of nonlinear partial differential equations of p-Laplacian type</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF SCIENTIFIC COMPUTING
ISSN
0885-7474
e-ISSN
—
Volume of the periodical
49
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
180-194
UT code for WoS article
000295419200004
EID of the result in the Scopus database
—