All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On a Special Class of Polynomial Surfaces with Pythagorean Normal Vector Fields

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43898298" target="_blank" >RIV/49777513:23520/12:43898298 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-27413-8_27" target="_blank" >http://dx.doi.org/10.1007/978-3-642-27413-8_27</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-27413-8_27" target="_blank" >10.1007/978-3-642-27413-8_27</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On a Special Class of Polynomial Surfaces with Pythagorean Normal Vector Fields

  • Original language description

    Rational shapes with rational offsets, especially Pythagorean hodograph (PH) curves and Pythagorean normal vector (PN) surfaces, have been thoroughly studied for many years. However compared to PH curves, Pythagorean normal vector surfaces were introduced using dual approach only in their rational version and a complete characterization of polynomial surfaces with rational offsets, i.e., a polynomial solution of the well-known surface Pythagorean condition, still remains an open and challenging problem.In this contribution, we study a remarkable family of cubic polynomial PN surfaces with birational Gauss mapping, which represent a surface counterpart to the planar Tschirnhausen cubic. A full description of these surfaces is presented and their properties are discussed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Lecture Notes in Computer Science

  • ISSN

    0302-9743

  • e-ISSN

  • Volume of the periodical

    2012

  • Issue of the periodical within the volume

    6920

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    14

  • Pages from-to

    431-444

  • UT code for WoS article

  • EID of the result in the Scopus database