On a Special Class of Polynomial Surfaces with Pythagorean Normal Vector Fields
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43898298" target="_blank" >RIV/49777513:23520/12:43898298 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-27413-8_27" target="_blank" >http://dx.doi.org/10.1007/978-3-642-27413-8_27</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-27413-8_27" target="_blank" >10.1007/978-3-642-27413-8_27</a>
Alternative languages
Result language
angličtina
Original language name
On a Special Class of Polynomial Surfaces with Pythagorean Normal Vector Fields
Original language description
Rational shapes with rational offsets, especially Pythagorean hodograph (PH) curves and Pythagorean normal vector (PN) surfaces, have been thoroughly studied for many years. However compared to PH curves, Pythagorean normal vector surfaces were introduced using dual approach only in their rational version and a complete characterization of polynomial surfaces with rational offsets, i.e., a polynomial solution of the well-known surface Pythagorean condition, still remains an open and challenging problem.In this contribution, we study a remarkable family of cubic polynomial PN surfaces with birational Gauss mapping, which represent a surface counterpart to the planar Tschirnhausen cubic. A full description of these surfaces is presented and their properties are discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
2012
Issue of the periodical within the volume
6920
Country of publishing house
DE - GERMANY
Number of pages
14
Pages from-to
431-444
UT code for WoS article
—
EID of the result in the Scopus database
—