Algebraic Curves of Low Convolution Degree
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43898299" target="_blank" >RIV/49777513:23520/12:43898299 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-27413-8_45" target="_blank" >http://dx.doi.org/10.1007/978-3-642-27413-8_45</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-27413-8_45" target="_blank" >10.1007/978-3-642-27413-8_45</a>
Alternative languages
Result language
angličtina
Original language name
Algebraic Curves of Low Convolution Degree
Original language description
Studying convolutions of hypersurfaces (especially of curves and surfaces) has become an active research area in recent years. The main characterization from the point of view of convolutions is their convolution degree, which is an affine invariant associated to a hypersurface describing the complexity of the shape with respect to the operation of convolution. We will focus on the two simplest classes of planar algebraic curves with respect to the operation of convolution, namely on the curves with theconvolution degree one (so called LN curves) and two. We will present an algebraic analysis of these curves, provide their decomposition, and study their properties.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
2012
Issue of the periodical within the volume
6920
Country of publishing house
DE - GERMANY
Number of pages
16
Pages from-to
681-696
UT code for WoS article
—
EID of the result in the Scopus database
—