Walking algorithms for point location in TIN models
Result description
Finding which triangle in a planar or 2.5D triangle mesh contains a query point (so-called point location problem) is a frequent task in geosciences, especially when working with triangulated irregular network models. Usually, a large number of point locations has to be performed, and so there is a need for fast algorithms having minimal additional memory requirements and resistant to changes in the triangulation. So-called walking algorithms offer low complexity, easy implementation, and negligible additional memory requirements, which makes them suitable for such applications. In this article, we focus on these algorithms, summarize, and compare them with regard to their use in geosciences. Since such a summary has not been done yet, our article should serve those who are dealing with this problem in their application to decide which algorithm would be the best for their solution. Moreover, the influence of the triangulation type on the number of the visited triangles is discussed.
Keywords
Point searchingSearching algorithmsPlanar triangulationTIN modelsTerrain models
The result's identifiers
Result code in IS VaVaI
Result on the web
DOI - Digital Object Identifier
Alternative languages
Result language
angličtina
Original language name
Walking algorithms for point location in TIN models
Original language description
Finding which triangle in a planar or 2.5D triangle mesh contains a query point (so-called point location problem) is a frequent task in geosciences, especially when working with triangulated irregular network models. Usually, a large number of point locations has to be performed, and so there is a need for fast algorithms having minimal additional memory requirements and resistant to changes in the triangulation. So-called walking algorithms offer low complexity, easy implementation, and negligible additional memory requirements, which makes them suitable for such applications. In this article, we focus on these algorithms, summarize, and compare them with regard to their use in geosciences. Since such a summary has not been done yet, our article should serve those who are dealing with this problem in their application to decide which algorithm would be the best for their solution. Moreover, the influence of the triangulation type on the number of the visited triangles is discussed.
Czech name
—
Czech description
—
Classification
Type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computational Geosciences
ISSN
1420-0597
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
4
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
17
Pages from-to
853-869
UT code for WoS article
—
EID of the result in the Scopus database
—
Basic information
Result type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP
IN - Informatics
Year of implementation
2012