Reducibility of offsets to algebraic curves
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F13%3A43916493" target="_blank" >RIV/49777513:23520/13:43916493 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0167839612000817" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0167839612000817</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cagd.2012.06.003" target="_blank" >10.1016/j.cagd.2012.06.003</a>
Alternative languages
Result language
angličtina
Original language name
Reducibility of offsets to algebraic curves
Original language description
Computing offset curves and surfaces is a fundamental operation in many technical applications. This paper discusses some issues that are encountered during the process of designing offsets, especially the problems of their reducibility and rationality (which are closely related). This study is crucial especially for formulating subsequent algorithms when the number and quality of offset components must be revealed. We will formulate new algebraic and geometric conditions on reducibility of offsets anddemonstrate how they can be applied. In addition, we will present that our investigations can also serve to better understand the varieties fulfilling the Pythagorean conditions (PH curves/PN surfaces). A certain analogy of the PH condition for parameterized curves (or general parameterized hypersurfaces) will be presented also for implicitly given (not necessarily rational) curves (or hypersurfaces).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - New Technologies for Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
COMPUTER AIDED GEOMETRIC DESIGN
ISSN
0167-8396
e-ISSN
—
Volume of the periodical
30
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
8
Pages from-to
140-147
UT code for WoS article
—
EID of the result in the Scopus database
—