All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

{4,5} Is Not Coverable: A Counterexample to a Conjecture of Kaiser and Škrekovski

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F13%3A43919734" target="_blank" >RIV/49777513:23520/13:43919734 - isvavai.cz</a>

  • Result on the web

    <a href="http://epubs.siam.org/doi/pdf/10.1137/120877817" target="_blank" >http://epubs.siam.org/doi/pdf/10.1137/120877817</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/120877817" target="_blank" >10.1137/120877817</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    {4,5} Is Not Coverable: A Counterexample to a Conjecture of Kaiser and Škrekovski

  • Original language description

    For a subset A of the set of positive integers, a graph G is called A-coverable if G has a cycle (a subgraph in which all vertices have even degree) which intersects all edge-cuts T in G with |T| is in A, and A is said to be coverable if all graphs are A-coverable. As a possible approach to the dominating cycle conjecture, Kaiser and Škrekovski conjectured that N+3 is coverable, where N+3 = {4,5,6,...}. In this paper, we disprove Kaiser and Škrekovski's conjecture by showing that there exist infinitelymany graphs which are not {4,5}-coverable. Read More: http://epubs.siam.org/doi/abs/10.1137/120877817

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM JOURNAL ON DISCRETE MATHEMATICS

  • ISSN

    0895-4801

  • e-ISSN

  • Volume of the periodical

    27

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    4

  • Pages from-to

    141-144

  • UT code for WoS article

    000316868600009

  • EID of the result in the Scopus database