{4,5} Is Not Coverable: A Counterexample to a Conjecture of Kaiser and Škrekovski
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F13%3A43919734" target="_blank" >RIV/49777513:23520/13:43919734 - isvavai.cz</a>
Result on the web
<a href="http://epubs.siam.org/doi/pdf/10.1137/120877817" target="_blank" >http://epubs.siam.org/doi/pdf/10.1137/120877817</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/120877817" target="_blank" >10.1137/120877817</a>
Alternative languages
Result language
angličtina
Original language name
{4,5} Is Not Coverable: A Counterexample to a Conjecture of Kaiser and Škrekovski
Original language description
For a subset A of the set of positive integers, a graph G is called A-coverable if G has a cycle (a subgraph in which all vertices have even degree) which intersects all edge-cuts T in G with |T| is in A, and A is said to be coverable if all graphs are A-coverable. As a possible approach to the dominating cycle conjecture, Kaiser and Škrekovski conjectured that N+3 is coverable, where N+3 = {4,5,6,...}. In this paper, we disprove Kaiser and Škrekovski's conjecture by showing that there exist infinitelymany graphs which are not {4,5}-coverable. Read More: http://epubs.siam.org/doi/abs/10.1137/120877817
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM JOURNAL ON DISCRETE MATHEMATICS
ISSN
0895-4801
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
4
Pages from-to
141-144
UT code for WoS article
000316868600009
EID of the result in the Scopus database
—