Homomorphisms of planar signed graphs to signed projective cubes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F13%3A43919958" target="_blank" >RIV/49777513:23520/13:43919958 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Homomorphisms of planar signed graphs to signed projective cubes
Original language description
We conjecture that every signed graph of unbalanced girth 2g, whose underlying graph is bipartite and planar, admits a homomorphism to the signed projective cube of dimension 2g-1. Our main result is to show that for a given g, this conjecture is equivalent to the corresponding case (k = 2g) of a conjecture of Seymour claiming that every planar k-regular multigraph with no odd edge-cut of less than k edges is k-edge-colorable.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.30.0013" target="_blank" >EE2.3.30.0013: Excellence in human resources as a source of competitiveness</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE
ISSN
1462-7264
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
3
Country of publishing house
FR - FRANCE
Number of pages
12
Pages from-to
1-12
UT code for WoS article
000327036900001
EID of the result in the Scopus database
—